PERIPHERAL NERVOUS SYSTEM

NERVOUS SYSTEM

The nervous system detects and responds to changes inside and outside the body.

It is quicker than other control system in the body, namely endocrine system.

Nervous system is divided into two parts:

- 1. Central nervous system
- 2. Peripheral nervous system.

CLASSIFICATION OF NERVOUS SYSTEM

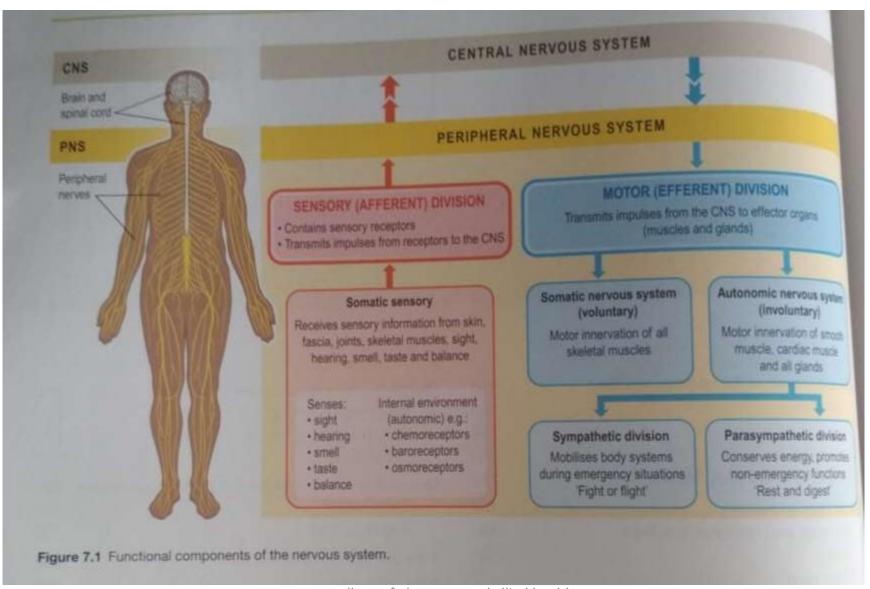
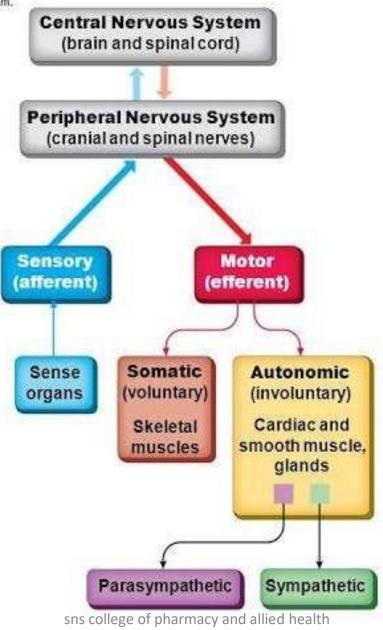
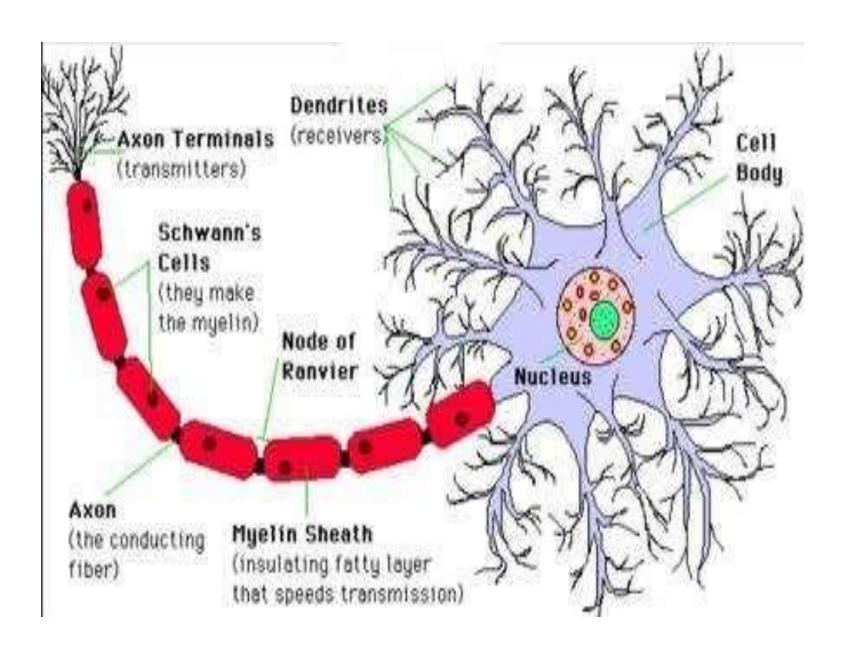
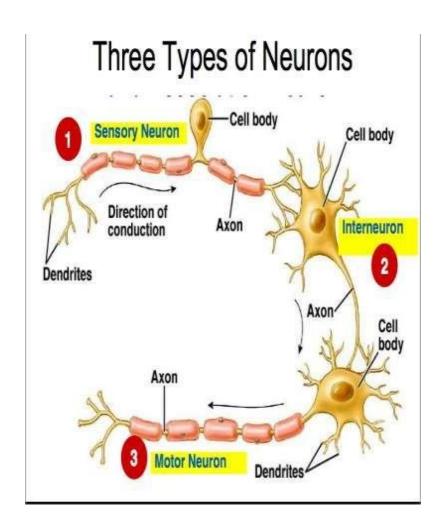
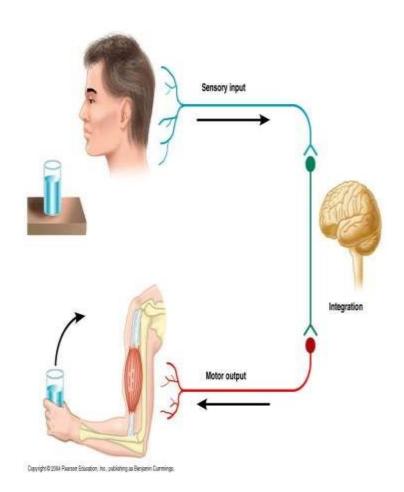



Figure 7.2 Organization of the nervous system.



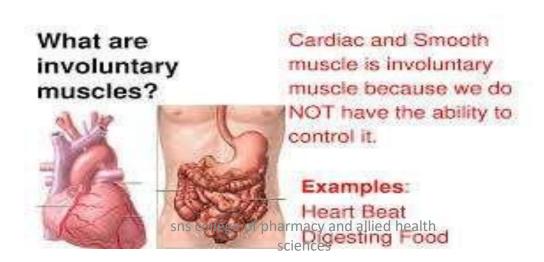
NEURONS


It is the basic unit cell of nervous system. These act as a information conducting units of the nervous system


Neuron components:

- > Dendrites
- ➤ Soma/cell body
- > Axons
- > Pre syanptic terminals

sns college of pharmacy and allied health sciences



NEUROTRANSMITTER

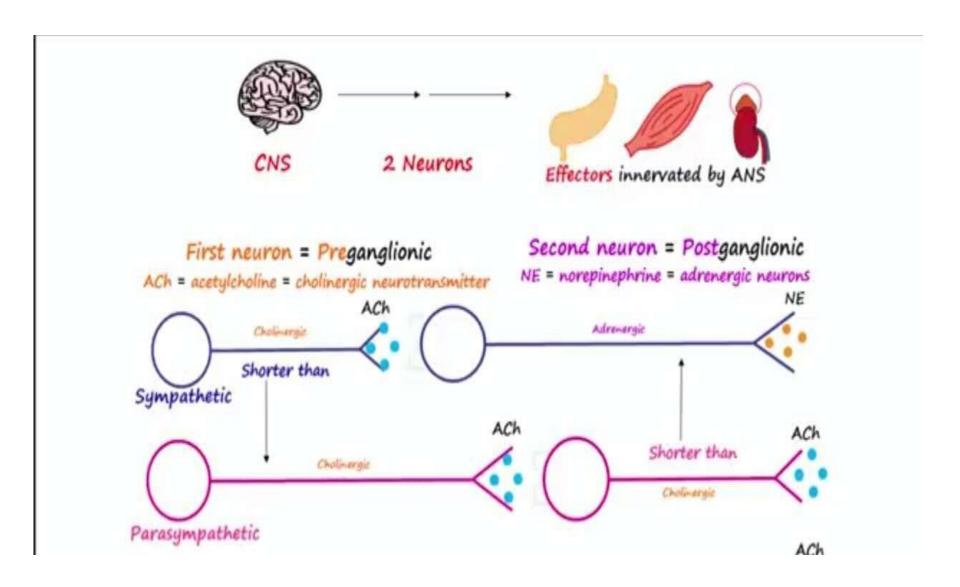
Neurotransmitter also called as chemical transmitter or chemical messenger is a group of chemical agents released by neurons to stimulate neighbouring neurons or muscle or gland cells, thus allowing impulses to be passed from one cell to the next throughout the nervous system.

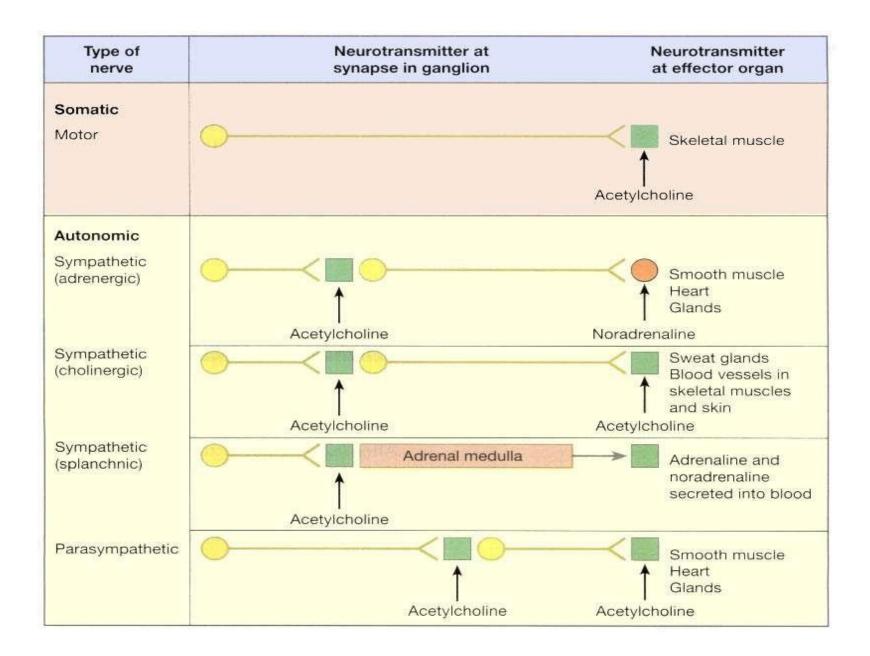
AUTONOMIC NERVOUS SYSTEM(ANS)

ANS is the part of peripheral nervous system that regulates involuntary functions of the body eg:heart beat, digestive functions of the intestine, control of respiration and secretion of glands. ANS is the portion of nervous system that controls visceral functions of the body

MECHANISM OF ANS

The *efferent (motor) nerves* of the autonomic nervous system arise from nerve cells in the brain and emerge at various levels between the midbrain and the sacral region of the spinal cord. Many of them travel within the same nerve sheath as the peripheral nerves of the central nervous system to reach the organs which they innervate.


The autonomic nervous system is divided into two divisions:

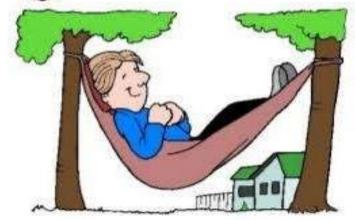

- > sympathetic (thoracolumbar outflow)
- > parasympathetic (craniosacral outflow).

The two divisions have both structural and functional differences.

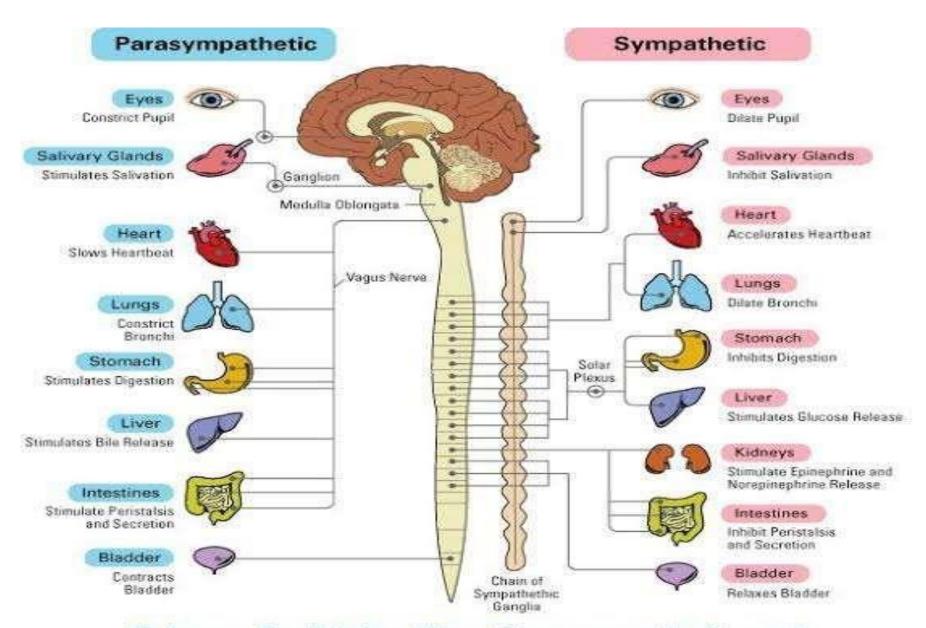
- Each division has two efferent neurones in its peripheral pathways between the central nervous system and effector organs. These are:
- > the preganglionic neurone
- > the postganglionic neurone.
- The cell body of the preganglionic neurone is in the brain or spinal cord. Its axon terminals synapse with the cell body of the postganglionic neurone in an *autonomic ganglion* outside the central nervous system.
- The postganglionic neurone conducts impulses to the effector organ

DIVISIONS OF ANS

AUTONOMIC NERVOUS SYSTEM


SYMPATHETIC

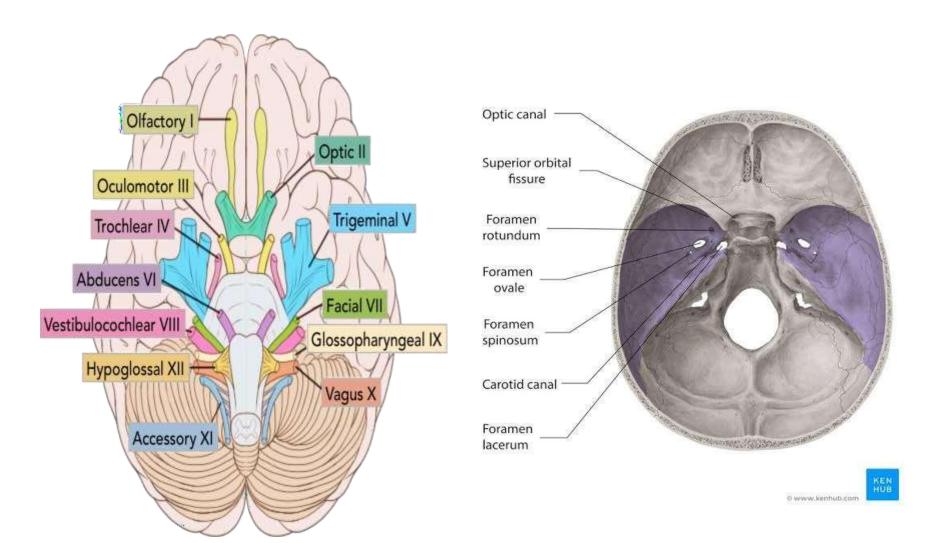
-fight on flight


PARASYMPATHETIC

- Rest and Digest

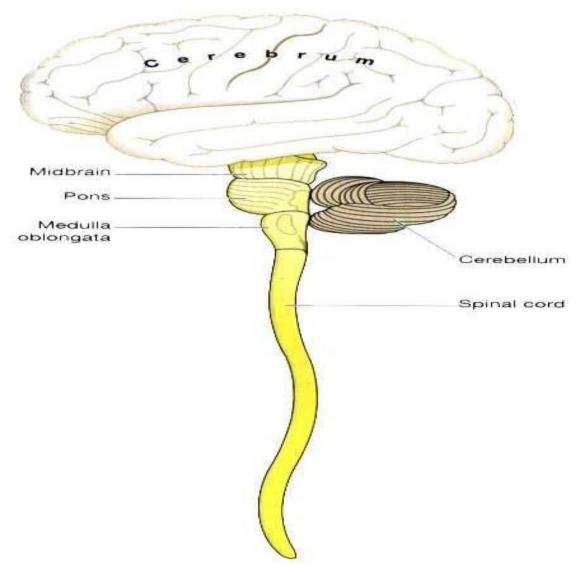
SYMPATHETIC AND PARASYMPATHETIC SYSTEM

ORGAN AND FUNCTION	SYMPATHETIC SYSTEM	PARASYMPATHETIC SYSTEM
Origin	Thoraco -lumbar	Cranio -sacral
Distribution	Wider in nature	Limited
Neurotransmitter	Major-nor adrenaline Minor-acetylcholine	Acetylcholine
Heart rate	Increased heart rate and increased force of contraction	Decreased heart rate and decreased force of contraction
Bronchi (Lungs)	bronchodialation	bronchoconstriction
Eye	Pupil dialation	Pupil constriction
GIT	Increased motility	Decreased motility
Urinary bladder	Bladder relaxes	constriction
Blood vessels	Constriction of blood vessels	dialation
Sweat gland	Increased sweat secretion	No effect
Lacrimal and salivary gland	Decresed secretion tear and saliva sciences	Increased secretion of tear and saliva



Schema Explaining How Parasympathetic and Sympathetic Nervous Systems Regulate Functioning Organs

ORIGIN AND FUNCTION OF CRANIAL AND SPINAL NERVES


Cranial nerve:

- ➤ Cranial nerves attached to the brains, they perform bundles of processes of neurons that innervate muscles or glands or carry impulses from sensory areas. they are called cranial nerves because they emerge through foramina or fissure in the cranium or skull and are covered by sleves of meninges.
- ➤ There are 12 pairs of cranial nerves they pass through the foramina in the skull and the main supply to the peripheral tissues of the head.
- ✓ III,IV Originate from mid brain
- ✓ Remaining cranial nerves-originate from brain stem

CRANIAL NERVES

NO	CRANIAL NERVES	NO	CRANIAL NERVES	
I	Olfactory nerve	VII	Facial nerve	
II	Optic nerve	VIII	Vestibulocochlear nerve	
III	Occulomotor nerve	IX	Glossopharngael nerve	
IV	Trochlear nerve X		Vagus nerve	
1 V			Accessory nerve	
V	Trigeminal nerve			
		XII	Hypoglossal nerve	
VI	VI Abducent		, 608.03341 1161 46	

sns college of pharmacy and allied health sciences

sns college of pharmacy and allied health sciences

OLFACTORY NERVE

Nature: sensory

Function: sense of smell

Origin: olfactory receptor nerve cells

Innervation: olfactory lobe of brain

II. OPTIC NERVE

Nature: sensory

Function: vision

Origin: back of the eye ball

Innervation: Diencephalon

OCCULOMOTOR NERVE

Nature: motor

Function: (i)movement of eye ball

(ii)Accomadates the eye

Origin: anterior surface of midbrain

Innervation:4 eye muscles of ciliary body, iris and tear gland

IV. TROCHLEAR NERVE

Nature: motor

Function: rotation of eyeball

Origin: posterior surface of mid brain

Innervation: superior oblique muscles of eyeball

TRIGEMINAL NERVE

V1-Ophthalmic nerve

V2-Maxillary nerve

V3-Mandibular nerve

V1-OPHTHALMIC NERVE

Nature: sensory

Function: a) cornea

b)Skin of forehead

c)Scalp

d)Eyelids and nose

Origin: anterior aspect of pons

Innervation: skin receptors of nose, forehead and iris

V2. MAXILLARY NERVE

Nature: sensory

Function: movement of cheek

Origin: anterior aspect of the pons

Innervation:skin receptors of cheek,lower eyelid,upper lip,teeth and gums of upper jaw

V3. MANDIBULAR NERVE

Nature: motor

Function:movement of lower jaw

Origin: mandibular

Innervation: skin receptor of lower lip, teeth and gums of lower

jaw

VI.ABDUCENT

Nature: motor

Function: rotation of eye ball

Origin: medulla oblangata

Innervation: external rectus eye muscle

VII. FACIAL BONE

Nature:mixed

Function: tasting of food, facial expression, saliva secretion, movement of neck

Origin:anterior lateral side of medulla oblangata

Innervation: sensory fibres- taste bud on posterior 2/3 part of tongue

Motor fibres-muscles of face, salivary gland, neck

VIII.VESTIBULAR COCHLEAR NERVE

Nature: sensory

Function:hearing and equilibrium

Origin: medulla oblangata

Innervation: anerio lateral side of medulla oblangata

IX. GLOSSOPHARYNGEAL NERVE

Nature: mixed

Function: tasting of food, salivation and swallowing

Origin: lateral side of medulla oblangata

Innervation: sensory fibre-to taste bud on anterior 1/3 part of tongue

Motor fibre-muscles of pharnyx, salivary glands

X.VAGUS

Nature: mixed

Function: visceral functions like senstion and movement

Origin: lateral side of medulla oblangata

Innervation: sensory fibres-to receptor present in wall of visceral organ

Motor fibres-muscles in the walls of visceral organs like alimentary

canal, heart,trachea,lungs,kidney and genital tract

XI. ACCCESSORY NERVES

Nature: mixed

Function: movement of larynx,pharynx,neck and shoulder

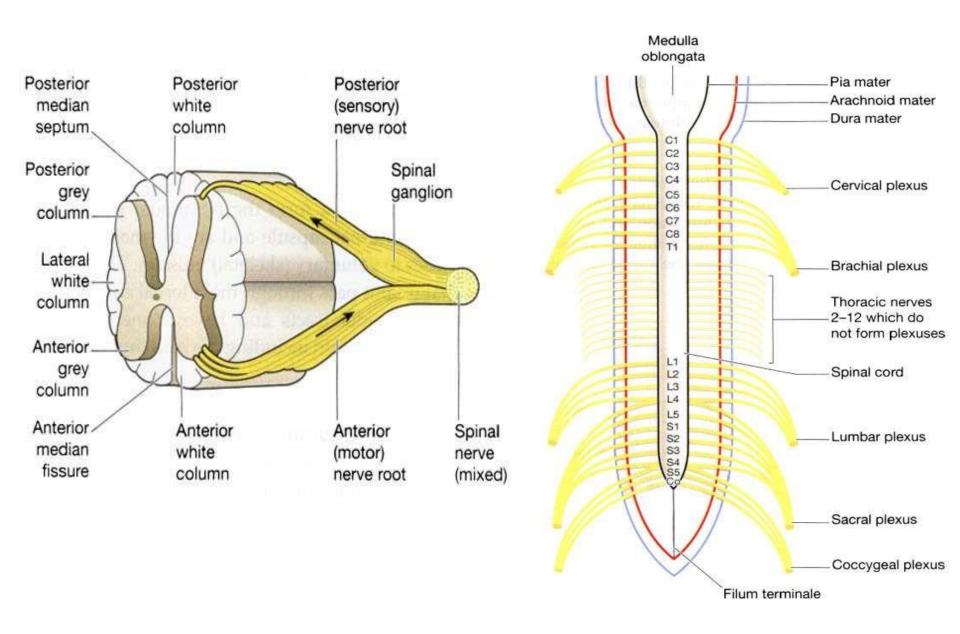
Origin: lateral side of medulla oblangata

Innervation: muscles of larynx, pharyn, neck and shoulder

XII. HYPOGLOSSAL NERVE

Nature: motor

Function: movement of tongue


Origin: medulla oblangata

Innervation: hypoglossal muscle in below tongue

SPINAL NERVES

Spinal cord:

- The spinal cord is the elongated, almost cylindrical part of the central nervous system, which is suspended in the vertebral canal surrounded by the meninges and cerebrospinal Fluid
- Except for the cranial nerves, the spinal cord is the nervous tissue link between the brain and the rest of the body
- The spinal cord is incompletely divided into two equal parts, anteriorly by a short, shallow *median fissure* and posteriorly by a deep narrow septum, the *posterior median septum*.
- A cross-section of the spinal cord shows that it is composed of grey matter in the centre surrounded by white Matter
- ➤ The nature of spinal nerves is mixed(sensor and motor function).

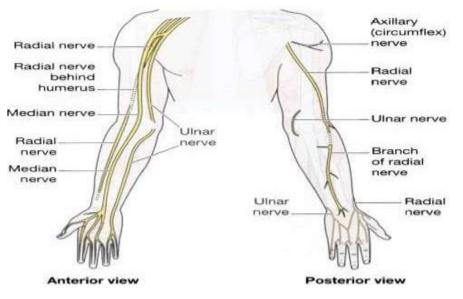
sns college of pharmacy and allied health sciences

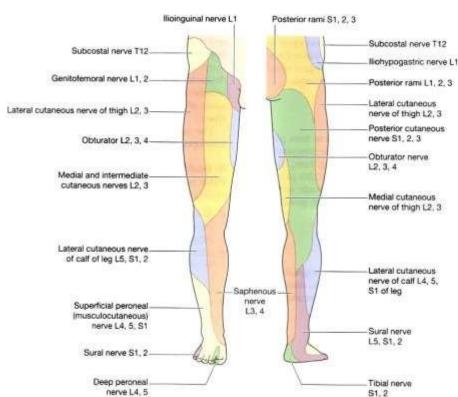
Spinal nerves

There are 31 pairs of spinal nerves that leave the vertebral canal by passing through the intervertebral foramina formed by adjacent vertebrae.

- Cervical nerve=C1-C8 (innervates neck region)
- Thoracic nerve=T1-T12(innervates the thoracic region)
- Lumbar nerve=L1-L5(Innervates upper part of abdomen)
- Saccral nerve=S1-S5 (innervates lower part of abdomen)
- Coccygeal nerve= 1 represent tail nerve

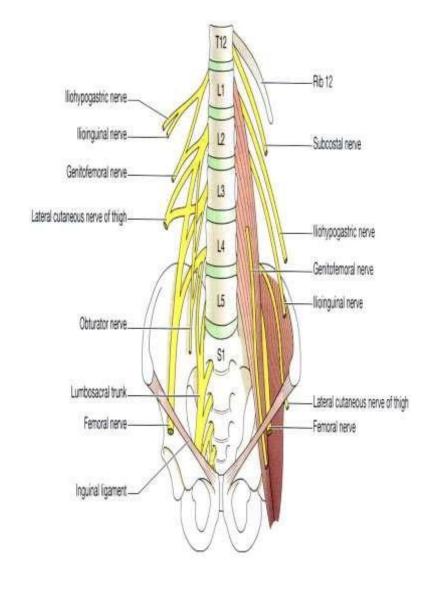
Plexuses


• In the cervical, lumbar and sacral regions the anterior rami unite near their origins to form large masses of nerves or plexuses


SPINAL NERVES

PLEXUS ES	ORIGIN	IMPORTANT NERVES	BODY AND SERVED	
cervical	C1-C5	Phrenic nerve	Diaphragm and muscles of shoulder and neck	
Brachial	C5-C8 T1	axillary nerve(C5,C6)	Deltoid muscles, shoulder joint and overlying skin	
		Radial nerves(C6,C7,C8,T1)	Muscles of wrist and finger joints	
		Musculocutaneous nerve (C5,C6,C7)	Muscles of upper arm and the skin of the forearm	
		median nerve: C5, 6, 7, 8, Tl	small muscles and the skin of the front of the thumb, the first two fingers and the lateral half of the third finger.	
		ulnar nerve: C7, 8, Tl sns college of pharmacy	arm of the hand and the skin of the whole of the little finger and the medial half of the	

Lumbar plexus	L1,L2	Genitoformal	lower abdomen, upper and medial aspects of the thigh and the inguinal region.
	L2,L3	lateral cutaneous nerve	lateral aspect of the thigh
	L2,L3,L4	Femoral nerve	supply the skin and the muscles of the front of the thigh.
	L2,L3,L4	obturator nerve	adductor muscles of the thigh and skin of the medial aspect of the thigh
	L4,L5	lumbosacral trunk	pelvis


Saccral plexus	L4,L5 S1-S3	Sciatic nerve	buttock then descends through the posterior aspect of the thigh
		tibial nerve	muscles and skin of the sole of the foot and toes
		Fibular nerve	Lateral aspects of leg and foot
Coccygeal plexus	S4,S5,C1	Coccygeal plexus	supply the skin in the area of the coccyx and anal area

Anterior view

Posterior view

acy and allied health nces

Functions of spinal nerve:

Sensory function:

sensory information are carried by the posterior or dorsal root of the spinal nerves from the areas innervated by them back to the brain Motor function:

Motor impulses are carried from the brain to the muscles by anterior root to the spinal nerves thus responding to the stimulus

Automatic function:

A proper functioning of internal organs is regulated by spinal nerves